Application
Tuning Guide

Dyalog version 17.1

IYALOGC

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2019 by Dyalog Limited
All rights reserved.

Application Tuning Guide

Dyalog version 17.1
Document Revision: 20190409_171

Unless stated otherwise, all examples in this document assume that JI0 OML <« 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

Array Editor is copyright of davidliebtag.com

Raspberry Piis a trademark of the Raspberry Pi Foundation.

Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX®is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Linux®is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows®is a registered trademark of Microsoft Corporation in the United States and
other countries.

macOS®and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Application Tuning Guide

Contents

1 About This Document .. . il 1
L AU ENCE L 1
1.2 CoNVENtIONS L 1

2 Introduction .. 3

3 Data Collection il 4
3.1 Before Initiating the Collection of Data 4
3.2 Initiating the Collection of Data 4
3.3 Collecting Data 5
3.4 Stopping the Collection of Data 6
3.5 Timer Overhead 6

4 Data RepPoOrting ... 7
4.1 Textual Reports . . 7
4.2 Graphical RePOIS ... 8

5 Data StOrage 11
5.1 XML FOrmat L 11

5.1.1 Example XMLFiles ... 12
5.2 CSV FOrmMat L 14
5.2.1 Example CSV Files ... 15
5.3 Text FOormat 16
5.3.1 Example Text Files oo 16

A Syntax of the JProfile User Command 18
AL RePOMt TYPOS L 18
A2 MOIfiOrS . 19
A3 EXaMPIES . 23

B The Dashboard 26
B.d Panels oo 26
B.2 Display OptioNns 28
B.3 Navigating the Functions/Lines i il 29

B.3.1 Breadcrumb Trail 29
B.3.2 Right-click Menu ... 29
B.4 MenU Bar L 30
B.4.1 File MeNU .o 30
B.4.2 WIndows MenU 30
B.4.3 Help Menu il 31
B.5 Single Function Mode 32

revision 20190409 171 i

Application Tuning Guide

1 About This Document

This document describes the way in which the JPROFILE system function and the
associate JPROFILE user command can be used to obtain a performance profile of an
application. It describes both the graphical and textual output that can be obtained
following data collection and shows how this data can be analysed and potential
inefficiencies identified..

1.1 Audience

It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge, see
https://www.dyalog.com/introduction.htm.

1.2 Conventions

Unless explicitly stated otherwise, all examples in Dyalog documentation assume that JI0
and ML are both 1.

Various icons are used in this document to emphasise specific material.
General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.
Information note highlighting material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision 20190409 171 1

https://www.dyalog.com/introduction.htm

Application Tuning Guide

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that are
available. A full list of the platforms on which Dyalog version 17.1is supported is available
at https://www.dyalog.com/dyalog/current-platforms.htm. Within this document,
differences in behaviour between operating systems are identified with the following
icons (representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision 20190409 171 2

https://www.dyalog.com/dyalog/current-platforms.htm

Application Tuning Guide

2 Introduction

Application design includes assumptions about usage patterns and data volumes. Over
time, these can evolve to the detriment of the application's performance. The most
effective way to counter drops in performance caused by changes external to the
application is to identify the hot spots (places in the application where a high proportion
of CPU or Elapsed Time is consumed); these hot spots can then be tuned to improve the
application's performance.

The JPROF ILE system function and the JProf i Le user command facilitate the hot spot
identification process; the JPROF ILE system function gathers statistics from an
application and the JProfi le user command summarises, filters and reports on this
data, simplifying the process of drilling down on the (frequently large amounts of) data
returned by [JPROFILE.

The OMONITOR system function, which was in use prior to the introduction of the
OPROFILE system function, has been deprecated and Dyalog Ltd recommends
rewriting tools to use the JPROF ILE system function instead; JPROFILE provides
high precision timing, calling tree analysis, and superior dfn and recursive code
handling.

For more information on the DPROF ILE system function, see the Dyalog APL Language
Reference Guide. For more information on the JProfi le user command, see
Appendix A.

revision 20190409 171 3

Application Tuning Guide

3 Data Collection

The JPROF ILE system function can collect very large quantities of data. This
means that, to profile a large application or to save a dataset as an XML file, the
workspace size might need to be increased significantly.

Usage data is collected for all APL functions that are executed when the JPROFILE system
function is in an active state.

For complete documentation of the JPROF ILE system function, see the Dyalog APL
Language Reference Guide.

3.1 Before Initiating the Collection of Data

To improve the accuracy of the data and minimise the impact of timer overhead (see
Section 3.5):

o Switch off as much hardware as possible, including peripherals and network
connections.

o Switch off as many other tasks and processes as possible, including anti-virus
software, firewalls, internet services and background tasks.

o Raise the priority on the Dyalog APL task to higher than normal.
On Microsoft Windows, avoid giving it the highest priority.

Data collected by the JPROF ILE system function is cumulative whenever the JPROFILE
system function is in an active state (but does not persist between Sessions); to discard
any previously-collected data, enter JPROFILE 'clear’.

3.2 Initiating the Collection of Data

Data collection is initiated by entering:
OPROFILE 'start'

revision 20190409 171 4

Application Tuning Guide

This puts JPROFILE into an active state.

OPROFILE supports profiling using either CPU or elapsed time. CPU time is usually of
more interest in profiling application performance and, by default, DJPROF ILE will register
CPU usage data using the best available counter.

3.3 Collecting Data

Whether data is being collected or not can be verified by entering:
OPROFILE 'state'

This returns a 4 element vector, in which:

e [1]is acharacter vector indicating the state of JPROFILE.
Can be either active or inactive (must be active for data collection).

e [2]is acharacter vector indicating the timer being used.
Can beCPU, elapsed, coverage or none.

e [3]isthe call time bias in milliseconds, that is the amount of time that is
consumed when the system takes a time measurement.

e [4]is thetimer granularity in milliseconds, that is, the resolution of the timer
being used. On most platforms this will be zero, indicating that the granularity is
smaller than the cost and cannot be estimated.

During data collection, the following data is recorded for each function and for each
individual line in a function:
o Calls —the number of times the function or line was executed.
o Exclusive Time — milliseconds spent executing the function or line, excluding time
spent in functions that were called by the function or line.

o Inclusive Time — milliseconds spent executing the function or line, including time
spent in functions that were called by the function or line.

The times collected by the JPROFILE system function include the time spent calling the
timer function. This means that lines that are called a large number of times can appear to
consume more resource than they actually do. For more accurate profiling
measurements, adjustments should be made for the timer call time bias. To do this, the
application should be run for a sufficiently long period to collect enough data to
overcome the timer granularity —a reasonable rule of thumb is to make sure the
application runs for at least 4000x4>[JPROFILE 'state' milliseconds.

The profiling data that is collected is stored outside the workspace and does not impact
workspace availability.

revision 20190409 171 5

Application Tuning Guide

OPROFILE can collect data for functions that are dynamically paged in and out of the
workspace.

Results can be confusing if several different functions with the same name are used
at different times during execution —these are treated as the same function by
OPROFILE.

3.4 Stopping the Collection of Data

Data collection is stopped by entering:
OPROFILE 'stop'

This puts OPROFILE into an inactive state.

3.5 Timer Overhead

As with all system timers, a cost is associated with the collection of timing data using the
OPROFILE system function. In optimised applications the overhead can be significant;
although it is unlikely to impact the identification of hot spots, it can distort results.

By default, reports produced with the JProf i Le user command automatically adjust for
timer bias, using the recorded bias — this can be disabled for a report by including the
-bias=0 modifier and modifier value.

The cost of querying a timer can vary significantly with system load, and repeatable
timings are only possible if there is very little activity on the system; the variability is due
to the timer calling the operating system kernel, which is servicing all processes on the
machine. Dyalog Ltd. recommends increasing the priority of the application being profiled
as this can reduce the variability (but will not eliminate it completely).

The timer cost and granularity are estimated the first time that JPROFILE is run in an APL
session. A new calibration can be requested by calling JPROFILE 'calibrate’.

revision 20190409 171 6

Application Tuning Guide

4 Data Reporting

Once data has been collected, summarised data for each function and line within that
function can be retrieved using [IPROFILE ‘'data’. Alternatively, data can be broken
down by calling trees so that it is summarised separately for every different path that led
to the function being executed —this is done using [IPROFILE 'tree'.In both these
cases, a very large quantity of data can be returned.

The JProfi le user command is a reporting tool that acts on the profiling data collected
by the JPROFILE system function, applying filters and limiting the output to a specified
subset of the total collected. This results in a reduced data quantity that is tailored to
display only what is required. For details of the syntax of the JProf i le user command,
see Appendix A.

The examples in this document assume that data has been collected as follows:

JLOAD sharpplot
C:\...\ ws\sharpplot.dws saved Mon May 8 09:57:02 2017

OPROFILE 'start'

#.Samples.Sample 'Sample.svg'
mySharpPlot Sample.svg

OPROFILE 'stop'

4.1 Textual Reports

After collecting the data, the consumption by function can be found using:
JProfile summary -expr="#.Samples.Sample 'Sample.svg'"
-first=10
Total time: 58.2 msec

Element msec % Calls
#.Samples.Sample 58.2 100.0 1
#.SharpPlot.DrawLineGraph 25.6 Lt4.0 1

revision 20190409 171 7

Application Tuning Guide

#.SharpPlot.Plot 18. 4 31.6 1
#.SharpPlot.DrawBarChart 7.7 13.3 1
#.SharpPlot.CHAPLOT 3.2 5.4 1
#.SharpPlot.DrawPieChart 2.2 3.8 1
#.SharpPlot.CHAPIE 1.9 3.3 1
#.SharpPlot.ConstructorDefault 1.3 2.2 1
#.SharpPlot.SharpPlot 1.3 2.2 1
#.psb.Constructor 1.2 2.1 12

In this expression the -expr modifier allows the specification of an APL statement to run,
and is equivalent to executing:

OPROFILE 'clear'

OPROFILE 'start'

#.Samples.Sample 'Sample.svg'

OPROFILE 'stop'

The inclusion of -first=10 limits the output to the top 10 functions in terms of CPU
consumption. To see the top 5 lines of code instead:

JProfile summary -lines -first=5
Total time: 58.2 msec

Element msec % Calls
#.Samples.Sample[33] 25.9 44.5 1
#.Samples.Sample[42] 25.6 44.0 1
#.SharpPlot.DrawLineGraph[43] 25.6 43.9 1
#.SharpPlot.Plot[174] 17.7 30.5 1
#.Samples.Sample[60] 2.2 3.8 1

Finally, the call analysis report for the Constructor function can be displayed:

JProfile calls -fn=#.psb.Constructor -first=5
Total time: 58.2 msec; Selected time: 1248.0 msec

Element msec % Calls
#.SharpPlot.CHAPLOT 0.4 0.8 3
#.SharpPlot.SharpPlot 0.3 0.6 L4
#.SharpPlot.CHABAR 0.2 0.3 2
#.SharpPlot.CHAAXES 0.1 0.2 1
#.SharpPlot.CHAXTIC 0.1 0.2 1

4.2 Graphical Reports

@ The Dashboard detailed in this section is only available on the Microsoft Windows
operating system. For information on using the Dashboard, see Appendix B.

revision 20190409 171 8

Application Tuning Guide

A graphical version of the textual reports can be viewed using the Dashboard. This
provides an overview of the resource consumption of an application that can be drilled
down into in pursuit of tuning opportunities.

To open the Dashboard on the dataset, call the]JProfi Le user command without
specifying any report type, that is:
JProfile

The Dashboard will open and display an overview of the data currently stored by
OPROFILE (OPROFILE must be stopped/inactive), as shown in Figure 4-1.

If the dataset is very large then it can take a few seconds to open the Dashboard.

= * |penfibe Cinshiscaan: 200 TA0G/T08 11021 ===
le Wedimy Feld
-~ B fampimnfmepie 5.3 oAb 883 mmme 1533 Pem =t [Fm -
P
Functizns Exchusive Time meom | Lines Brvamg Farlswe e L i
wrme 5 piRe mapg
#:bmpheniarplal 3l Bl =z n: oAz
wo =1 1=
LERTH [NET
] 0a 15 (IR
| [T (T
| s ¢ 1 oB
7. Banaed. L iziadel 7] | oA Ld dER DR
Tasce sareval B ooy ozux oo
W ARG R LGE R LT |WemiaCamreriy T Upsprcded || woLahS FpeLAT . RIST | B rrain [L rar e
rage T blis - nsee. B bARs -
Ll oy al 1 PLat arpedTAITRLamgzd ILInan *marberacntaivalibbarfEcaimpacani el 5 aftl LI [aTa=i DmpwlblOW DATA
re1 [] 1 ckrcess privets 1 SaLsr-ip-[EIbaTalscramt naircnnive
Lesl [T T T lydalesz sheluns skppmivaeg CwsCASRLIT T4TA WAL prppn dldns fiE
Lean o e ® aond X velade appropr lelale Lo Rba Y dele @ T Podisnele oo b =Rk meYL)
L} [Tt} 1 TERET T Elmarlues b esdLisiard
rail 0F aa 1 Wity Mo T 0T WRELLS B OTE QIR BEELC Male
L3} [T TR | - e
Faat nrona i Arr arsers aus s mamee s irsase
“ " ' L] 1

Figure 4-1: Dashboard showing default configuration

To open the Dashboard on a dataset that is not currently stored by JPROFILE, the
modifiers —expr and/or -infi le can be included:

e -expr runs the specified expression and then opens the Dashboard on the
resultant dataset, for example, JProfile -expr="#.Samples.Sample

‘Sample.svg'". Doing this destroys any existing JPROF ILE data and replaces it
with data for the specified expression.

revision 20190409 171 9

Application Tuning Guide

e« -infile opensthe Dashboard on the dataset contained in the specified .xml file,
forexample, JProfile -infile=c:\temp\one.xml. Doing this does not
destroy any existing JPROFILE data.

revision 20190409 171 10

Application Tuning Guide

5 Data Storage

The JProfi le user command can direct output to a file instead of displaying it in the
Session. To do this, the -out f i Le modifier must be included; its modifier value must be
the name of file in which to write the report data. By default, data is stored in an XML
format, but this can be changed with the -format modifier:

e Tosavedatain XML format, include -format=xml in the callto the JProfile

user command (see Section 5.1). This is the default, so does not have to be
explicitly stated.

e Tosavedatain CSV format, include -format=csv in thecallto the JProfi le user
command (see Section 5.2).

o Tosavedatain text format, include -format=txt in the callto the JProfi le user
command (see Section 5.3).

5.1 XML Format

Using the XML format generates very large files. However, tree reports in XML format
can be used as input to the JProfi le user command (using the -inf i Le modifier) and
are the only way to store a complete data set that can be reused for reporting at a later
time. For example, entering the following command:

JProfile tree -outfile=c:\temp\one.xml

saves the tree report in a file called one.xml in the c:\temp directory. This file can be
opened later (in the same or a different Session) by entering:

JProfile summary -infile=c:\temp\one.xml

In addition, as user commands can be executed under program control, an application
can record its own usage data. For example:

OSE.UCMD 'profile tree -outfile=c:\temp\one.xml'

The XML format produced by the JProf i le user command comprises an outer
<ProfileData> element; this contains a <ProfileSettings> element followed by a
number of <ProfileEntry> elements, one for each row of output data.

revision 20190409 171 11

Application Tuning Guide

The <ProfileSettings> element contains the version number of the]JProfi le user
command that produced the file, the report title, information about timer cost and other
information, including the total registered time for the report.

Each <ProfileEntry> element contains an element for each output column, depending
on the command and switches, selected from the set listed in Table 5-1.

Table 5-1: Elements that can be contained within the ProfileEntry element

Element Description
Depth Tree depth
Element Function name
Line Line number —empty for a function summary entry
Calls Number of times the function or line was called

IncusiveTime | Time consumed inclusive/exclusive of time consumed in any
ExclusiveTime | sub-functions called (in ms)

AvgTime Average time per call (in ms)

5.1.1 Example XML Files

This section contains a few examples of output files created using -format=xml (all files
are encoded as UTF-8).

JProfile tree -outfile=tree.xml
Data written to: tree.xml

revision 20190409 171 12

Content of the tree.xml file:

<?xml version="1.0"7?>
<ProfileData>
<ProfileSettings>
<Version>1.37</Version>
<Title>2017/05/08 11:22:19</Title>
<TimerBias>0.00007458669726290168</TimerBias>
<Command>tree</Command>
<TotalTime>173.41</TotalTime>
<SelectedTime>173.41</SelectedTime>
</ProfileSettings>
<ProfileEntry>
<Depth>0</Depth>
<Element>#.Samples.Sample</Element>
<Line> 1</Line>
<Calls>1</Calls>
<ExclusiveTime>19.362</ExclusiveTime>
<InclusiveTime>61.828</InclusiveTime>
</ProfileEntry>

...many more occurrences of <ProfileEntry>...

</ProfileData>

JProfile summary -outfile=summary.xml
Data written to: summary.xml

Content of the summary.xml file:

<?xml version="1.0"7?>
<ProfileData>
<ProfileSettings>
<Version>1.37</Version>
<Title>2017/05/08 11:31:00</Title>
<TimerBias>0.00007458669726290168</TimerBias>
<Command>summary</Command>
<TotalTime>58.2</TotalTime>
<SelectedTime>58.2</SelectedTime>
</ProfileSettings>
<ProfileEntry>
<Element>#.Samples.Sample</Element>
<Line/>
<InclusiveTime>58.2</InclusiveTime>
<PctOfTot>100</PctOfTot>
<Calls>1</Calls>
</ProfileEntry>

...many more occurrences of <ProfileEntry>...

revision 20190409 171

Application Tuning Guide

13

</ProfileData>

5.2 CSV Format

Application Tuning Guide

Files saved in CSV format can be used by many external tools. For example:

JProfile data -outfile=c:\temp\data.csv -format=csv

-separators="'.,

creates a CSV file using a period as the decimal separator and a comma as the field
separator. This file can be viewed either by opening it in a text editor or in a spreadsheet

(as shown in Figure 5-1 and Figure 5-2 respectively).

"Element","Line","Calls

,"ExclusiveTime","InclusiveTime"

2 "#.psb.DrawWedge",,2,0.011,0.021

3 "#.psb.DrawWedge",1,2,0.001,0.001

4 "#.psb.DrawWedge",2,2,0.001,0.001

5 "#.psh.DrawWedge",3,2,0.001,0.001

6 "#.psh.DrawWedge",4,2,0.001,0.001

7 "#.psh.DrawWedge",5,2,0.001,0.001

& "#.psh.DrawWedge",6,2,0.001,0.001

9 "#.psh.DrawWedge",7,2,0.001,0.001
10 "#.psb.DrawWedge",8,2,0.001,0.001

1 "% nsh Nrauladas" 9.2 0.001 0.001

Figure 5-1: Viewing the saved data CSV file as a text file
A B C E

1 |Element Line Calls ExclusiveTime InclusiveTime
2 #.psbh.DrawWedge 2 0.011 0.021
3 #.psb.DrawWedge 1 2 0.001 0.001
4 | #.psh.DrawWedge 2 2 0.001 0.001
5 #.psbh.DrawWedge 3 2 0.001 0.001
6 #.psbh.DrawWedge 4 2 0.001 0.001
7 #.psb.DrawWedge 5 2 0.001 0.001
8 #.psbh.DrawWedge 6 2 0.001 0.001
9 #.psb.DrawWedge 7 2 0.001 0.001
10 #.psb.DrawWedge 8 2 0.001 0.001
11 [#.nsh.DrawWedee 9 2 n.nom n.om

Figure 5-2: Viewing the saved data CSV file as a Microsoft Excel spreadsheet

revision 20190409 171

14

Application Tuning Guide

Figure 5-2 shows the data.csv file opened in Microsoft Excel; to do this, enter the
following in a Session:

‘XL' OWC 'OLEClient' 'Excel.Application'
XL.Visible<«1l
XL.Workbooks.Openc'c:\temp\data.csv'

5.2.1 Example CSV Files

This section contains a few examples of output files created using -format=csv (all files
are encoded as UTF-8). The first row of each file contains column names, selected from the
same list as the element names that can appear in XML files (see Table 5-1).

JProfile tree -outfile=datal.csv -format=csv
Data written to: datal.csv

Content of the datal.csv file:

"Depth", "Element", "Line", "Calls", "ExclusiveTime", "InclusiveTime"
0,"#.Samples.Sample™, 1,1,19.362,61.828
1,"#.Samples.Sample",1,1,0.002,0.002
1,"#.Samples.Sample",2,1,0,0
1,"#.Samples.Sample",3,1,0,0
1,"#.Samples.Sample",4,1,0,0
1,0.0
0,0

’

I4

1,"#.Samples.Sample", 5,
1,"#.Samples.Sample",6,1,0,
1,"#.Samples.Sample",7,1,0.874,2.388
2,"#.SharpPlot.ConstructorDefault", 1,1,0.007,1.513
3,"#.SharpPlot.ConstructorbDefault",1,1,0,0
3,"#.SharpPlot.ConstructorDefault",2,1,0.001,0.001
3,"#.SharpPlot.ConstructorDefault",3,1,0.004,1.51
4,"#.SharpPlot.SharpPlot", 1,1,0.219,1.506

.etc...

05,0.005

l4

JProfile data -outfile=data2.csv -format=csv
-separators=",;"
Data written to: data2.csv

Content of the data2.csv file:

"Element";"Line";"Calls";"ExclusiveTime";"InclusiveTime"
" .psb.DrawWedge";;2;0,011;0,021
"#.psb.DrawWedge";1;2;0,001;0,001
"#.psb.DrawWedge";2;2;0,001;0,001
"#.psb.DrawWedge";3;2;0,001;0,001
"#.psb.DrawWedge";4;2;0,001;0,001
"#.psb.DrawWedge";5;2;0,001;0,001
"#.psb.DrawWedge";6;2;0,001;0,001
"#.psb.DrawWedge";7;2;0,001;0,001

revision 20190409 171 15

Application Tuning Guide

"#.psb.DrawWedge";8;2;0,001;0,001
"#.psb.DrawWedge";9;2;0,001;0,001
..etc...

JProfile summary -first=5 -outfile=data3.csv -format=csv
Data written to: data3.csv

Content of the data3.csv file

"Element","Line","Time", "PctOfTot","Calls"
"#.Samples.Sample",,58.2,100,1
"#.SharpPlot.DrawLineGraph",,25.626,44.03092784,1
"#.SharpPlot.Plot",,18.373,31.56872852,1
"#.SharpPlot.DrawBarChart",,7.726,13.27491409,1
"#.SharpPlot.CHAPLOT",,3.153,5.417525773,1

5.3 Text Format

If the text format is used, the output is written to the file as it would have been displayed

in the Session.

5.3.1 Example Text Files

JProfile summary
Total time:

58.2 msec

Element msec % Calls
#.Samples.Sample 58.2 100.0 1
#.SharpPlot.DrawLineGraph 25.6 L4.0 1
#.SharpPlot.Plot 18.4 31.6 1
#.SharpPlot.DrawBarChart 7.7 13.3 1
#.SharpPlot.CHAPLOT 3.2 5.4 1
#.SharpPlot.DrawPieChart 2.2 3.8 1
#.SharpPlot.CHAPIE 1.9 3.3 1
#.SharpPlot.ConstructorDefault 1.3 2.2 1
#.SharpPlot.SharpPlot 1.3 2.2 1
#.psb.Constructor 1.2 2.1 12
#.psb.psb 1.2 2.1 12
#.SharpPlot.CHABAR 1.0 1.8 1
#.SharpPlot.DrawNote 1.0 1.6 1
#.SharpPlot.CHAXLAB 0.9 1.6 1
#.SharpPlot.RunElements 0.9 1.6 2
#.SharpPlot.CHANOTE 0.9 1.6 1
#.psb.MeasureEach 0.9 1.5 8
#.SharpPlot.CHAMETRIC 0.9 1.5 7

revision 20190409 171

16

#.Common.ListAdd 0.8
#.SharpPlot.CHAHEAD 0.8

JProfile summary -outfile=data.txt
Data written to: data.txt

1.
1.

Application Tuning Guide

152

-format=txt

|ELement
#.5amples.Sample
#.5harpPlot.DrawlineGraph
#.SharpPlot.Plot
#.SharpPlot.DrawBarChart
#.5harpPlot.CHAPLOT
#.5harpPlot.DrawPieChart
#.SharpPlot.CHAPIE
#.5harpPlot.ConstructorDefault
#.5harpPlot.SharpPlot
#.psb.Constructor
£.psb.psb
#.5harpPlot.CHABAR
SharnPlat NrauNata

O WO 0 O~ O F W R e

=~
F W R =

Figure 5-3: Viewing the saved data txt file as a text file

revision 20190409 171

msec

r
o oo

[y
[e S e I B)

1

2
&
4
7
2
2
.9
3
3
2
2
0
n

1

R R R R W W W

[
I e o T I e

17

Application Tuning Guide

A Syntax of the]Profile User
Command

The JProfi le user command is always followed by a report type; modifiers can be
included to customise the output.

Syntax: JProfile [reporttypel[-avg][-code][-lines]|[-outfile{=name}]
[-format{=xml|csv|txt}][-cumpct][-exclusivel[-first{=n}|-pct{=n}]
[-fn{=name}][-infile{=name}][-separators{="decimalsep phrasesep"}]
[-bias{=t}][-decimal{=n}][-expr{=expression}][-title{=name}]

A.1 Report Types

The six possible report types are detailed in Table A-1. If no report type is specified then a
default report type is assumed; this is dashboard on the Microsoft Windows operating
system and summary on the AlX, Linux and Mac OS operating systems.

Table A-1: Report types that can be generated using the JProfile user command

Report Type Description

Shows how the consumption of a named function (the - fn modifier is
required) is broken down by calling function.

LtL
carts The summary and cal Ls report types are the most frequently used
reporting tools.
The Dashboard is only available on the Microsoft Windows
operating system.
Opens the Dashboard, a graphical overview of the profiling data collected
dashboard

by the JPROFILE system function. For more information on the
Dashboard, see Appendix B.

This is the default report type on the Microsoft Windows operating
system.

revision 20190409 171 18

Application Tuning Guide

Table A-1: Report types that can be generated using the JProfile user command
(continued)

Report Type Description
data Writes the raw data produced by JPROFILE 'data’ to afile for use
with tools other than JProfi Le, for example, Microsoft Excel.
state Displays the current profiling state of JPROFILE (see Section 3.3).
Reports the number of calls, total consumption and consumption as a
percentage of overall consumption.
The summary and cal Ls report types are the most frequently used
summary .
reporting tools.
This is the default report type on the AlIX, Linux and macOS operating
systems.
Writes the raw data produced by DPROFILE 'tree’ to afile for later
tree use. Intended as a tool for storing data using the -outfile=<name>
modifier, for subsequent reporting using the -infile=<name>
modifier.

A.2 Modifiers

The report types can be qualified using modifiers. These can, for example, filter the data
that is displayed, add optional output columns, read input from a previously saved file or
store the results of a command in a file.

Each of the report types can have different combinations of modifiers applied. The state
report type does not take any modifiers; the valid modifiers for each of the other report
types are shown in Table A-2.

Table A-2: Report types and the modifiers that can be applied to them

b JEelh e calls dashboatedpo::\tlzes summary| tree
-avg Y y y
-bias y Y y y Y
-code y y

revision 20190409 171 19

Application Tuning Guide

Table A-2: Report types and the modifiers that can be applied to them

(continued)
- Report Types

Modifier calls dashboardp da:':a' summary | tree
-cumpct y y y
-decimal Y y y y
-exclusive |y y y
“expr y y y y Y
-first v y y
-fn y y y y
-format v y y y
-infile y y y y y
-lines y y y y
-outfile Y y y y
-pet y y y
-separators [yx y* yx y*
—titlexx yx % Y x % yxx y*x y**

x can only be used when -format=csv is included
*x only relevant when -format=xml or -format=txt

Table A-3, Table A-4 and Table A-5 describe these modifiers.

Table A-3: Modifiers for data selection

Modifier Description
—av Includes the average CPU consumption (in ms) per execution of each
J function call (or line if the - L i nes modjfier is specified).

revision 20190409 171

20

Application Tuning Guide

Table A-3: Modifiers for data selection (continued)

Modifier Description
Includes the source code for the line being executed (including the
-code -code modifier forces the - | i nes modifier).
Cannot be used with the -out f i Le modifier.
Displays the cumulative percentage of overall CPU consumption that
_cumpct each function call (or line if the - L i nes modifier is specified) and each

function call above it was responsible for.
This is usually only useful if the —exc Lus i ve modifier is also set.

-exclusive

Displays the CPU consumption of each function call (or line if the -
Ll ines maodifier is specified) excluding consumption due to called
functions.

-first=n

After sorting into descending order of CPU consumption, displays only
the first n function calls (or lines if the - L i nes modifier is specified).
This is usually only useful if the —exc Lus i ve modifier is also set.
Cannot be used with the -pct modifier.

-fn=name

Mandatory fora cal Ls report type, when it specifies the function that
the calls analysis report is for. Optional for other report types, when
output is filtered to only include data for the specified function and
other functions that it calls.

-lines

Displays a breakdown of consumption by individual line rather than a
total for each function (the default).
Assumed when the -code modifier is specified.

-pct=n

After sorting into descending order of CPU consumption, displays only
those function calls (or lines if the - L i nes modifier is specified) for
which the cumulative percentage of overall CPU consumption is less
than or equal to n.

This is usually only useful if the —exc Lus i ve modifier is also set.
Cannot be used with the -f i rst modifier.

revision 20190409 171

21

Application Tuning Guide

Table A-4: Modifiers for redirecting output to a file rather than display it on the screen

Modifier Description

Selects the file format to use when saving a file using the

-out fi le modifier. Possible values are:
e xml —writes data to an XML file

-format=n e csv—writes data to a CSV file

o txt —writes data to a text file (and retains the display
format)

The default is xml.

Opens the Dashboard on the dataset contained in the specified
-infile=n xml file.
Doing this does not destroy any existing JPROFILE data.

For use with -format=csv.
-separators=nn | Specifies the decimal and comma separators to use.
The defaultis .,

Foruse with -format=xml or -format=txt.

Specifies the string that is used as a title caption in the Dashboard
and XML reports. Especially useful when running the same
expression multiple times as different captions can differentiate
-title=n between different sets of results.

Ifthe -t it Le modifier is not specified, then the caption defaults
to the string specified by the —expr modifier. If neither the
-title northe -expr modifiers are specified, then the caption
defaults to]profile Dashboard: <date> <time>

Redirects the output from the Session to the specified full path
-outfile=n and filename (the full path must already exist).
Cannot be used with the -code modifier.

Table A-5: Other modifiers

Modifier Description

Overrides the function call overhead estimated by OPROFILE during
the current session (or read from an infi le), and uses t instead. Use
-bias=t -bias=0toignore bias, or a fixed value if you want to make sure that
you use the same bias for data collected at different times. Depending
on environment, t is likely to be in the range 0.00001-0.001 (in ms).

revision 20190409 171 22

Application Tuning Guide

Table A-5: Other modifiers (continued)

Modifier Description

Specifies the number of decimal places to display for non-integer
-decimal=n | numbers.
The defaultis 1.

Executes the expression specified as the modifier value and replaces any

—expr=n
P existing JPROF ILE data with that for the specified expression.

A.3 Examples

The examples in this section are intended to show at least one use of every modjfier.

JLOAD sharpplot
C:\...\ ws\sharpplot.dws saved Mon May 8 09:57:02 2017

OPROFILE 'start'

#.Samples.Sample 'Sample.svg'
mySharpPlot Sample.svg

OPROFILE 'stop'

To see which 5 functions consumed the most CPU time:
JProfile summary -expr="#.Samples.Sample 'Sample.svg"'"
-first=5
Total time: 56.1 msec

Element msec % Calls
#.Samples.Sample 56.1 100.0 1
#.SharpPlot.DrawLineGraph 24.9 L. 4 1
#.SharpPlot.Plot 18.0 32.1 1
#.SharpPlot.DrawBarChart 7.8 14.0 1
#.SharpPlot.CHAPLOT 3.2 5.6 1

Show the five biggest CPU consumers, excluding CPU time spent in sub-functions. Display
decimal numbers to 3 decimal places, include a cumulative percentage and only include
functions up to 65% of the cumulative CPU:

JProfile summary -exclusive -decimal=3 -cumpct -pct=65
Total time: 58.2 msec

revision 20190409 171 23

Element

#.Samples.

Sample

#.SharpPlot.Plot

msec
19.351
14.719

%
33.249
25.290

Calls

1
1

Application Tuning Guide

%(cum)

33.249

58.540

To see the average CPU consumption per call without adjusting for timer bias:

JProfile summary -exclusive -decimal=3 -avg -bias=0

Total time:

Element

#.Samples.

Sample

#.SharpPlot.Plot
#.SharpPlot.DrawLineGraph

61.8 msec

msec
19.362
14.733
7.254

%

31.316
23.829
11.733

Calls

1
1
1

19.
14,
7.

-first=3

Avg
362
733
254

The second set of numbers are higher than the first —the total time is 3.6 ms higher when

the timer bias adjustment is not made and the function with the highest consumption,
#.Samples.Sample, is reported as having consumed 0.011 ms more. The raw data
recorded for a function can be displayed (without bias adjustment) by the data report

type; in this case the function with the highest consumption is the one of interest:

JProfile data -fn=#.Samples.Sample

Total time:

Element

HoH R R R R R R R

...etc...

.Samples.
.Samples.
.Samples.
.Samples.
.Samples.
.Samples.
.Samples.
.Samples.
.Samples.

Sample

Sample[1]
Sample[2]
Sample[3]
Sample[4]
Sample[5]
Sample[6]
Sample[7]
Sample[8]

389.7 msec;

Calls

1
1
1
1
1
1
1
1
1

msec (ex

23.
0.

O~ OO O O o

Selected time:

c)

O FF OO OOOOOo

msec(inc)

104.
0.

O NOOO OO

O WO O OOoOOoOOoOwm

104475.0 msec

For a summary or calls report, the -code modifier can be used to include source code in a

report:

JProfile summary -code -lines -first=5

Total time: 56.1 msec

Element

#.Samples.Sample[33]
sp.DrawBarChartcdatal
#.Samples.Sample[42]

sp.DrawLineGraphcdata2

revision 20190409 171

msec
25.5

24.9

45.

Ll

%
L

L

Calls

1

Code

24

Application Tuning Guide

#.SharpPlot.DrawLineGraph[43] 24.9 44,3 1 Plot yValues
xValues'linegraph'

#.SharpPlot.Plot[174] 17.3 30.9 1 cv<CHAPLOT
DATA VAL ptype ilLine iMarker(bFramedvbCropped)

#.Samples.Sample[7] 2.0 3.5 1 sp<[INEW

Causeway.SharpPlot

The -outfi le modifier allows output to be directed to a file instead of displaying it in the
Session. By default, the format of the data in the file is XML, but this can be changed to
CSV or text with the -format modifier. For example:

JProfile data -outfile=c:\temp\data.csv -format=csv

-separators="'.,"'

creates a CSV file using a period as the decimal separator and a comma as the field
separator. For more information on the -out f i Le modifier, see Chapter 5.

If output is directed to an XML or text file, then the -t i t L e modifier can be used to
specify a title that will be displayed when viewing that file in the Dashboard:

JProfile tree -expr="queens 8" -title="queens eight"
-outfile="c:\temp\g8profile.xml"

Ifthe -t it le modifier is omitted then the specified expression is used as the title.

The -infile modifier loads a previously-saved dataset for analysis — specifying this does
not destroy any existing JPROFILE data:

JProfile -infile="c:\temp\test.xml"

This only applies when the dataset being loaded was a tree report saved in XML format
(see Section 5.1).

revision 20190409 171 25

Application Tuning Guide

B The Dashboard

The Dashboard is only available on the Microsoft Windows operating system.

To open the Dashboard on a dataset, call the JProf i le user command without
specifying any report type, that is:
JProfile

The Dashboard will open and display an overview of the data currently stored by
OPROFILE (OPROFILE must be stopped/inactive).

B.1 Panels

The main body of the Dashboard is divided into four panels by moveable splitters, as
shown in Figure B-1.

revision 20190409 171 26

File Windows Help

= #.3aaples.Semple 30.1 of 38.2

| profile Dashboard: 2017/05/08 11:09:41

mrec (200.00)

Application Tuning Guide

(== @

Pets of: | Total -|
SRR
Showng: [Excuswe w

Functions

¥8.5harpPlot.Plot

Exclusive Time ||

EilaniaCommanty. || Lines nod caled|

msec % nins - mawc X nig -
tel 0e o 1 Plot srgiDATAYR: lentossilineriMarkersdatal VAL ibSur faceimyines ibabasl = CHAVINDOW DATA
73] oo on 1 thecess privats T WAL===(18[2)BATA}echzaissingvaive
[32] oe on 1 (yvaluer xVelues piypel=arg E] T T 1 Gw=CHAPLOT DATA WAL piype iLime M
Lir) os oo 1 I [-BepxVaiues] & wéd X walues sppropristely to the ¥ dsis (bh}] LERCE) 1 RunElessnts ev aphees apitie sy¥ei
211 o0 o0 1 datampVaives (3] [T T 1 ClasrlUied » chadtataw?
[£13] ee oo ' feKYpiot=falee 4 [a82) [TRCT TOUEF BGelLe A IF Rhe CCell’ ptyie v=
f23] 06 oo 1 sEmers -
rasy nm_nan 1 218 mCHACME Asks & cBmbues @& rEnATE = =
p r

Lines Showing Exclusive time [rae '\.

miec % hits avy
8. Samphas.Seaplal13] s n2 132
#.5narpPlot.Plot(i7s] - 6 25 1 28
#.srarpPiot.Oraviinesrapnival [l T2 124 1 124
Lsamplas.senplall) | 0y 15 118

rpPlot .CHAPLOT(231] as os 1 0%

#.5harpPlot.CHaPIE[120] L2 108
g4 07 %2 00

|
|
#.Commen.Listiddl?] |
B 121 207 2 00

632 others]

wE. SharpPlot.Plot

3

Figure B-1: Dashboard with moveable splitters in their default positions

The panels shown in Figure B-1 are:

o panel 1—-Functions panel
Consumption broken down by function. Displayed as a pie chart by default, but
can be displayed as a table using the drop-down selector in the top right corner.

e panel 2 -Lines panel
Consumption broken down by line. Displayed as a table with lines presented in
order of decreasing CPU percentage consumed, but can be displayed as a pie chart
using the drop-down selector in the top right corner.

o panel 3 -Line details panel
Only populated when a line is clicked in panel 2; displays the code of the function in
which the selected line appears.

¢ panel 4 —Function details panel

Only populated when a function is clicked in panel 1; displays the code of the
selected function.

In Figure B-1, the Function details panel was populated by clicking on the pie segment for
#.SharpPlot.Plot inthe Functions panel and the Line Details panel was populated by
clicking on the row for #.SharpPlot.Plot[174] in the table in the Lines panel.

revision 20190409 171 27

Application Tuning Guide

B.2 Display Options

The information presented in the four panels can be configured using the options
described in this section.

Immediately above the Lines panel are two drop-down lists:

o Pcts of —how the percentages listed in tables and as labels on pie charts are
computed:

o Total: The given percentage is the percentage of overall consumption. This is
the default.

o Selection: The given percentage is the percentage of consumption of the
function currently being displayed.

o Showing — whether tables report time consumed inclusive or exclusive of time

consumed in any sub-functions called (pie charts always report exclusive time):

o Exclusive: Show the consumption of each line or function excluding time
consumed in any sub-functions called. This is the default.

o Inclusive: Show the consumption of each line or function including time
consumed in any sub-functions called.

Changing the selections in these drop-down lists changes the display in the Functions
panel and Lines panel.

The Functions panel and Lines panel each have a drop-down list in the top-right corner:

o Table—if selected, functions/lines are displayed in tabular form. Left-clicking a row
in a table displays information related to that row's function/line in the Function
details/Line details panel. This is the default for the Lines panel.

o Pie—if selected, functions/lines are displayed in a pie chart with segment sizes
related to CPU percentage consumed. Left-clicking a segment in a pie chart displays
information related to that segment's function/line in the Function details/Line
details panel. This is the default for the Functions panel.

The Function details panel and Line details panel each have two check boxes in the top-
right corner:

o Blanks/comments — if selected, the details presented will include lines that are
blank or only comprise a comment. The default is for these to be omitted.

o Lines not called —if selected, any lines that were not called at all when running the
function will be included. The default is for these to be omitted.

revision 20190409 171 28

Application Tuning Guide

B.3 Navigating the Functions/Lines

A left-click in a pie segment (or on its label) or table row displays the source code for the
selected function/line in the quadrant below. A double-click drills down on the relevant
function/line (if possible) and updates all quadrants accordingly. Drilling down always
allows indirect calls.

B.3.1 Breadcrumb Trail

Immediately above the panelled body of the Dashboard (see Section B.1) is a breadcrumb
trail describing the function currently displayed in the panels. At the end of this
breadcrumb trail is a label that reports the percentage of the overall consumption that
this function accounts for. Figure B-2 shows an example breadcrumb trail.

= 2 fns * #.SharpPlot.DrawLineGraph + #.SharpPlot.DrawlLineGraph ~+ t#.5harpPlot.Plot = 58.8 of 192.6 msec (30.5%)

Figure B-2: Example breadcrumb trail in the Dashboard

Each breadcrumb in the trail has one of the following symbol/highlighting colour
combinations:

e Aright arrow (=) and blue highlighting indicate a direct call to a function without
intermediate functions.

o Astar () and green highlighting indicate a call sequence in which other functions
could have been called.

e An upwards arrow (t) and pink highlighting indicate a "show calls" step has been
made, that is, consumption is displayed according to the functions/lines that have
called the relevant function/line (see Section B.3.2).

Clicking a function in the breadcrumb trail displays that function in the panels.

B.3.2 Right-click Menu

Aright-click in a pie segment (or on its label) or table row displays a pop-up menu with the
following options, each of which impacts one or more panels of the display:

« Drill Down — Drills down one level on the relevant function/line (equivalent to
double-clicking on the relevant segment/label/row). This option is only included in
the pop-up menu when it is possible to drill down.

+ Make Root —Only displays consumption that originates in the relevant
function/line.

o Show Calls — Breaks down consumption according to the functions/lines that have
called the relevant function/line (higher levels of filtering are retained).

+ Reset —Returns to the starting position.

revision 20190409 171 29

Application Tuning Guide

o Up 1 Level —Drills up one level (equivalent to clicking on the penultimate
breadcrumb in the breadcrumb trail). This option is only included in the pop-up
menu when it is possible to drill up.

B.4 Menu Bar

This section details the options available under each of the menu items in the menu bar.

B.4.1 File Menu

The options available under the File menu are detailed in Table B-1.

Table B-1: File menu options

Item Description
Opens an explorer window from which an XML file can be selected and

Open | analysed.
Equivalent to starting the Dashboard with the -inf i Le modifier set.
Saves the current dataset.

Save | Equivalent to callingthe]Prof i le user command with the -out f i l e modifier
set.

Reset Returns the Dashboard to its the initial state, displaying the initial top-level
function in four panels (as shown in Figure 4-1).

Exit Terminates the Dashboard and returns to the Dyalog Session.

For panel number references, see Section B.1.

B.4.2 Windows Menu

The options available under the Windows menu are detailed in Table B-2.

Table B-2: Windows menu options

Item Description
Positions the vertical and horizontal splitters in their default position, as
Reset seen when first opening the Dashboard, and display the first function in the

breadcrumb trail.

revision 20190409 171 30

Application Tuning Guide

Table B-2: Windows menu options (continued)

Item

Description

Functions

Moves the vertical splitter to the right hand edge of the Dashboard,
displaying only the functions panels (panels 1 and 4).

This can also be achieved by double-clicking at the top of the Functions
panel (panel 1).

Function
Details

Moves the vertical splitter to the right-hand edge of the Dashboard and the
horizontal splitter to the top of the Dashboard, displaying only the
Function details panel (panel 4).

This can also be achieved by double-clicking at the top of the Function
details panel (panel 4).

Lines

Moves the vertical splitter to the left-hand edge of the Dashboard,
displaying only the lines panels (panels 2 and 3).

This can also be achieved by double-clicking at the top of the Lines panel
(panel 2).

Line
Details

Moves the vertical splitter to the left-hand edge of the Dashboard and the
horizontal splitter to the top of the Dashboard, displaying only the Line

details panel (panel 3).
This can also be achieved by double-clicking at the top of the Line details

panel (panel 3).

For panel number references, see Section B.1.

B.4.3 Help Menu

The options available under the Help menu are detailed in Table B-3.

Table B-3: Help menu options

Item Description
About Displays the version number of the JPROFILE user command and the
corresponding user command framework.

revision 20190409 171 31

B.5 Single Function Mode

Application Tuning Guide

If the data set only pertains to a single function, then the dashboard displays two panels
rather than four (as shown in Figure B-3). In this situation, the panel on the left displays

the detailed view of the function body (equivalent to panel 3 or 4 in Figure B-1); the panel
on the right displays the Lines panel (equivalent to panel 2 in Figure B-1).

EXAMPLE

JLOAD dfns
lJProfile -expr="pqueens 8"

(H| Iprofile Dashboard: Oqueens 8 2016/07/21 15:05:50

(100.0%)

= 2 [l

File Windows Help
+ #.queens 8.9 of 8.9 msec
v#.queens
msac i hits
o1 | 02 18 2509
21 | 01 13 863
121 [14 153 863
+1 | 02 21 583
s1 [08 93 5317
61 [l 03 93 537
71 | 08 95 5317
a1 [13 148 537
[91 00 00 1
111 00 02 1
(131 [21 230 ess
[151 00 01 46
1181 04 43 93
11711 05 51 231
11| 01 11 @2
1s1] 01 15 46
rzo01| 01 08 4
211 00 00 1
[23] 00 00 1
241 00 01 1
[251 00 00 1
[261 00 03 1
[z71 00 00 1
1251 00 00 1
311 00 00 1

queens+~{0I0 OML+0 1
search={
(c8)ew: Opet
0=pu:rmdups o
(sw)(14w)

next+a=, "hd

hd tl=(

rems~hd free’ctl
t,/next v rems

}

evex=(1+ww)=c"1 0 1

free-{u-"o+(pu)tevex}

rmdups~{
rots~{{ful\t/=u}
refs—{{4u}\2/ca}
best{(aktu)au}
2l18~, trefsrots o
(w=best all8)=8(,cw)

1

Fmte{
chars+' &'[(tu)s.=1a]
expd=14, taps0 1
t"4+expdichars

}

squares={ci[ws2), tupciw

o fmt @ search squares

code

ERE 2 NN

ERETE Y

EE

ERE TN NN Y

["iBianks/Comments; 7] Lines not called

The N-queens problem.
Search for all solutions.
stitched: abandon this branch.
all done: solution!
head 'n tail of remaining ramks.
possible next steps.

unchecked squares.

. in following ranks.

Checking vectars.
Unchecked squares.

Ignore duplicate solution.
4 rotations.

2 reflections.

best (=lowest) solution.
all 8 orientstions.

ignere if not best.

Format solution.
char array of placed queens.
expansion mask.

vector of char matrices.

initial squares

all distinct solutions.

Lines Showing Exclusive time
msec % hits avg
#.queens[13]1 [21 230 863 00
#.queens[3] [14 153 863 00
#.queens[2] [13 148 537 00
#.queens[7] [08 95 537 00
#.queens[5] [l 08 93 537 00
#.queenss] [08 93 537 00
#.queens[171]] 05 51 231 00
#.queens[18][] 04 43 93 00
#.queens[s] | 02 21 583 00
#.queens[19]] 01 15 46 00
#.queens[2] | 01 13 883 00
#.queens[18]] 01 11 82 00
#.queens[201] 01 08 46 00
[15 others] | 01 08 64 00

revision 20190409 171

Figure B-3: Dashboard in single function mode

32

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	3 Data Collection
	3.1 Before Initiating the Collection of Data
	3.2 Initiating the Collection of Data
	3.3 Collecting Data
	3.4 Stopping the Collection of Data
	3.5 Timer Overhead

	4 Data Reporting
	4.1 Textual Reports
	4.2 Graphical Reports

	5 Data Storage
	5.1 XML Format
	5.1.1 Example XML Files

	5.2 CSV Format
	5.2.1 Example CSV Files

	5.3 Text Format
	5.3.1 Example Text Files

	A Syntax of the]Profile User Command
	A.1 Report Types
	A.2 Modifiers
	A.3 Examples

	B The Dashboard
	B.1 Panels
	B.2 Display Options
	B.3 Navigating the Functions/Lines
	B.3.1 Breadcrumb Trail
	B.3.2 Right-click Menu

	B.4 Menu Bar
	B.4.1 File Menu
	B.4.2 Windows Menu
	B.4.3 Help Menu

	B.5 Single Function Mode

